

Software Engineering for NSFSoftware Engineering for NSF
Science and CIScience and CI

Susan Sons
IU-CACR, TrustedCI

sesons@iu.edu

OverviewOverview
Landscape
Software Development/Security Programs
MVP (Minimally Viable Program)
Level 2
 ---- BREAK ----
Level 3
Level 4
Building and Maturing Your Program
(aka story time)
Q&A

The Landscape:The Landscape:
What are science's real softwareWhat are science's real software

challenges?challenges?

Science is Different.Science is Different.

GoalsGoals

Reproducibility
Integrity
Sustainability

ConstraintsConstraints

Life Cycle
Accidental
Developers
Time travel effect

Software Development andSoftware Development and
Security ProgramsSecurity Programs

What makes it a program?What makes it a program?
Ongoing activity
Budget
Goals
Iteration
Fault Tolerance

How muchHow much
is enough?is enough?

Four FactorsFour Factors
Policy: ad hoc or formalized
Communication (internal and external)
Resources, tools, and expertise
Consistency

Six Levels:Six Levels:
 0. Do nothing.

1. MVP: recommended for small one-
off experiments and POCs.

2. Basic SWE Practice: for non-CI that
is shared.

3. Default Level: for widely used
science software and most CI.

4. For high-reliability CI.
5. For critical CI and code with high

assurance requirements.

Q & AQ & A

MVP: Minimally ViableMVP: Minimally Viable
(software engineering)(software engineering)

ProgramProgram

MVP Goals:MVP Goals:
Integrity:
Reviewers know exactly what software touched the research
data. CI owners can trace problems when the software runs.
Reproducibility:
Peers can examine the source, or build and re-use the software,
days or decades later in order to attempt to reproduce the
results.
Continuing the Scientific Process:
Software without a license is presumed to be "all rights
reserved". Other researchers cannot touch it.
Clarity:
Those considering use of the software should know what it does
and what state it's in.

MVP Features:MVP Features:
Revision Control
Documentation:
dependencies and build process
Build System
Changelog
Development Status
License

Revision ControlRevision Control

DocumentationDocumentation

Build SystemBuild System

ChangelogChangelog

Development StatusDevelopment Status

LicenseLicense

Q & AQ & A

Six Levels:Six Levels:
 0. Do nothing.

1. MVP: recommended for small one-
off experiments and POCs.

2. Basic SWE Practice: for non-CI that
is shared.

3. Default Level: for widely used
science software and most CI.

4. For high-reliability CI.
5. For critical CI and code with high

assurance requirements.

Level 2: Basic SoftwareLevel 2: Basic Software
Engineering PracticeEngineering Practice

Start with MVP Features:Start with MVP Features:
Revision Control
Documentation:
dependencies and build process
Build System
Changelog
Development Status
License

Level 2 adds:Level 2 adds:
Revision Control Usage Patterns
Semantic Versioning
Distribution Planning
Code Signing
Basic Security Policy, to include
Vulnerability Management
Dependency Selection
Succession Planning
Issue Tracker
Testing

Revision Control Usage PatternsRevision Control Usage Patterns
Branching, Tagging, and AuthoritativeBranching, Tagging, and Authoritative

RepositoryRepository

Semantic VersioningSemantic Versioning
https://semver.orghttps://semver.org

https://semver.org/

Software Distribution PlanSoftware Distribution Plan
Channels, Notifications, FrequencyChannels, Notifications, Frequency

Code SigningCode Signing

DependenciesDependencies

SuccessionSuccession

Issue TrackerIssue Tracker

TestingTesting

Q & AQ & A

Six Levels:Six Levels:
 0. Do nothing.

1. MVP: recommended for small one-
off experiments and POCs.

2. Basic SWE Practice: for non-CI that
is shared.

3. Default Level: for widely used
science software and most CI.

4. For high-reliability CI.
5. For critical CI and code with high

assurance requirements.

Level 3: Default LevelLevel 3: Default Level

ReviewReview

Level 1Level 1
Revision Control
Documentation:
dependencies and build process
Build System
Changelog
Development Status
License

Level 2Level 2
Revision Control Usage Patterns
Semantic Versioning
Distribution Planning
Code Signing
Dependency Selection
Succession Planning
Issue Tracker
Testing

Level 3 Adds:Level 3 Adds:
Least Privilege and Code Review
Basic Security Policy, to include
Vulnerability Management
Coding Standards
Automated and Manual Testing Reqs
Automated Builds
Development Documentation
Issue Tracker Management
Up/Down Stream Communication
Architectural Review
Security Exercises

Least Privilege and CodeLeast Privilege and Code
ReviewReview

Coding StandardsCoding Standards

Software Security PolicySoftware Security Policy
Must include vulnerabilityMust include vulnerability

management.management.

Bare Minimum Security Policy:Bare Minimum Security Policy:
NTPSec, circa 2016NTPSec, circa 2016

"The NTPSec Project Manager, Mark Atwood, accepts risk on behalf of
the NTPSec project. The NTPSec Information Security Officer, Susan

Sons, has the authority to declare an incident and direct its
remediation."

Software Security Policy Considerations:Software Security Policy Considerations:
Who accepts risk?
NOT your security officer.
Who leads an incident?
What happens if one of these people is unavailable?
What standards do we follow on a daily basis?
Who can make policy exceptions, and how?
What documentation is done, and when is it reviewed?
When is the policy reviewed/updated?
How are inside and outside vulnerability reports handled?
What disaster plans do we have?

Testing:Testing:
Automated and ManualAutomated and Manual

Automated BuildsAutomated Builds

DevelopmentDevelopment
DocumentationDocumentation

Issue Tracker ManagementIssue Tracker Management

Up/Down StreamUp/Down Stream
CommunicationCommunication

Architectural ReviewArchitectural Review

Security ExercisesSecurity Exercises

Q & AQ & A

Six Levels:Six Levels:
 0. Do nothing.

1. MVP: recommended for small one-
off experiments and POCs.

2. Basic SWE Practice: for non-CI that
is shared.

3. Default Level: for widely used
science software and most CI.

4. For high-reliability CI.
5. For critical CI and code with high

assurance requirements.

Six Levels:Six Levels:
 0. Do nothing.

1. MVP: recommended for small one-
off experiments and POCs.

2. Basic SWE Practice: for non-CI that
is shared.

3. Default Level: for widely used
science software and most CI.

4. For high-reliability CI.
5. For critical CI and code with high

assurance requirements.

Level 1Level 1
Revision Control

Documentation:

dependencies & build

process

Build System

Changelog

Development Status

License

Level 2Level 2 Level 3Level 3
Revision Control Usage

Patterns

Semantic Versioning

Distribution Planning

Code Signing

Dependency Selection

Succession Planning

Issue Tracker

Testing

Least Privilege, Code Review
Basic Security Policy

Vulnerability Management
Coding Standards

Automated and Manual
Testing Reqs
Automated Builds
Development Docs
Issue Tracker Management
Up/Down Stream Comms
Architectural Review
Security Exercises

Level 4 Adds:Level 4 Adds:
Next iteration on policy

Static analysis, when available

Expectations management

Formal change review process

Maturing the security exercise program

Release cycle management

Understanding downstream to ultimate deployments

Iterating on PolicyIterating on Policy

Static AnalysisStatic Analysis

Expectations ManagementExpectations Management

Formal Change ReviewFormal Change Review

Maturing the SecurityMaturing the Security
Exercise ProgramExercise Program

Release Cycle ManagementRelease Cycle Management

Understanding DownstreamUnderstanding Downstream
to Ultimate Deploymentsto Ultimate Deployments

Q & AQ & A

In the end, it'sIn the end, it's
about adoption...about adoption...

Best Case:Best Case:
Introducing theIntroducing the
Security ProgramSecurity Program
atat
ConceptualizationConceptualization

Second-Best Case:Second-Best Case:
Introducing theIntroducing the
Security ProgramSecurity Program
During the InitialDuring the Initial
Build PhaseBuild Phase

Strategies forStrategies for
phasing securityphasing security
into an activeinto an active
developmentdevelopment
project.project.

Improving whatImproving what
you've gotyou've got

Q & AQ & A

Thank you for your time and attention!Thank you for your time and attention!
Here are some resources to continue your journey:

TrustedCI:
IU CACR:
Talk notes and slides will go up at
within 48 hours.

https://trustedci.org
https://cacr.iu.edu

https://security.engineering/talks

Questions/comments/etc welcome:
sesons@iu.edu

sons@security.engineering

https://trustedci.org/
https://cacr.iu.edu/
https://security.engineering/talks
mailto://sesons@iu.edu
mailto://sons@security.engineering

Using and Sharing This Work:Using and Sharing This Work:
 "Software Engineering for NSF Science and CI" by is licensed

under a .

Please credit and the
when using this presentation.

Permissions beyond the scope of this license may be available; send inquiries to

.

The most current version of this presentation is available from

Susan Sons
Creative Commons Attribution-ShareAlike 4.0 International License

Susan Sons IU Center for Applied Cybersecurity Research

sons@security.engineering

https://slides.com/hedgemage/nsf-summit18-swe-guide

http://creativecommons.org/licenses/by-sa/4.0/
http://security.engineering/talks
http://creativecommons.org/licenses/by-sa/4.0/
http://security.engineering/
http://cacr.iu.edu/
mailto://hedgemage@binaryredneck.net
http://mailto//sons@security.engineering
https://slides.com/hedgemage/nsf-summit18-swe-guide

